quaternion function - définition. Qu'est-ce que quaternion function
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quaternion function - définition

NUMBERS W + X I + Y J + Z K, WHERE W, X, Y, AND Z ARE COMPLEX NUMBERS, OR VARIANTS THEREOF, AND THE ELEMENTS OF {1, I, J, K} MULTIPLY AS IN THE QUATERNION GROUP
Complex quaternion; Complexified quaternion; Biquaternions

Function (mathematics)         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously.
Quaternion algebra         
GENERALIZATION OF QUATERNIONS TO OTHER FIELDS
Quaternion (division algebra); Quaternion algebras; Split quaternion algebra
In mathematics, a quaternion algebra over a field F is a central simple algebra A over FSee Pierce. Associative algebras.
Transfer function         
FUNCTION SPECIFYING THE BEHAVIOR OF A COMPONENT IN AN ELECTRONIC OR CONTROL SYSTEM
Transfer-function; Transfer Function; Natural response; Pulse-transfer function; Network function; Transfer curve; Transfer characteristic; System function
In engineering, a transfer function (also known as system functionBernd Girod, Rudolf Rabenstein, Alexander Stenger, Signals and systems, 2nd ed., Wiley, 2001, p.

Wikipédia

Biquaternion

In abstract algebra, the biquaternions are the numbers w + x i + y j + z k, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:

  • Biquaternions when the coefficients are complex numbers.
  • Split-biquaternions when the coefficients are split-complex numbers.
  • Dual quaternions when the coefficients are dual numbers.

This article is about the ordinary biquaternions named by William Rowan Hamilton in 1844 (see Proceedings of the Royal Irish Academy 1844 & 1850 page 388). Some of the more prominent proponents of these biquaternions include Alexander Macfarlane, Arthur W. Conway, Ludwik Silberstein, and Cornelius Lanczos. As developed below, the unit quasi-sphere of the biquaternions provides a representation of the Lorentz group, which is the foundation of special relativity.

The algebra of biquaternions can be considered as a tensor product C H {\displaystyle \mathbb {C} \otimes \mathbb {H} } (taken over the reals) where C or C {\displaystyle \mathbb {C} } is the field of complex numbers and H or H {\displaystyle \mathbb {H} } is the division algebra of (real) quaternions. In other words, the biquaternions are just the complexification of the quaternions. Viewed as a complex algebra, the biquaternions are isomorphic to the algebra of 2 × 2 complex matrices M2(C). They are also isomorphic to several Clifford algebras including H(C) = Cℓ03(C) = Cℓ2(C) = Cℓ1,2(R),: 112, 113  the Pauli algebra Cℓ3,0(R),: 112 : 404  and the even part Cℓ01,3(R) = Cℓ03,1(R) of the spacetime algebra.: 386